Angle Sum Property of a Triangle: Theorem, Examples and Proof (2024)

Angle Sum Property of a Triangle is the special property of a triangle that is used to find the value of an unknown angle in the triangle. It is the most widely used property of a triangle and according to this property, “Sum of All the Angles of a Triangle is equal to 180º.”

Angle Sum Property of a Triangle is applicable to any of the triangles whether it is a right, acute, obtuse angle triangle or any other type of triangle. So, let’s learn about this fundamental property of a triangle i.e., “Angle Sum Property “.

Table of Content

  • What is the Angle Sum Property?
  • Angle Sum Property Formula
  • Proof of Angle Sum Property
  • Exterior Angle Property of a Triangle Theorem
  • Angle Sum Property of Triangle Facts
  • Solved Example
  • FAQs

What is the Angle Sum Property?

For a closed polygon, the sum of all the interior angles is dependent on the sides of the polygon. In a triangle sum of all the interior angles is equal to 180 degrees. The image added below shows the triangle sum property in various triangles.

Angle Sum Property of a Triangle: Theorem, Examples and Proof (1)

This property holds true for all types of triangles such as acute, right, and obtuse-angled triangles, or any other triangle such as equilateral, isosceles, and scalene triangles. This property is very useful in finding the unknown angle of the triangle if two angles of the triangle are given.

Angle Sum Property Formula

The angle sum property formula used for any polygon is given by the expression,

Sum of Interior Angle = (n − 2) × 180°

where ‘n’ is the number of sides of the polygon.

According to this property, the sum of the interior angles of the polygon depends on how many triangles are formed inside the polygon, i.e. for 1 triangle the sum of interior angles is 1×180° for two triangles inside the polygon the sum of interior angles is 2×180° similarly for a polygon of ‘n’ sides, (n – 2) triangles are formed inside it.

Example: Find the sum of the interior angles for the pentagon.

Solution:

Pentagon has 5 sides.

So, n = 5

Thus, n – 2 = 5 – 2 = 3 triangles are formed.

Sum of Interior Angle = (n − 2) × 180°

⇒ Sum of Interior Angle = (5 − 2) × 180°

⇒ Sum of Interior Angle = 3 × 180° = 540°

Proof of Angle Sum Property

Theorem 1: The angle sum property of a triangle states that the sum of interior angles of a triangle is 180°.

Proof:

The sum of all the angles of a triangle is equal to 180°. This theorem can be proved by the below-shown figure.

Angle Sum Property of a Triangle: Theorem, Examples and Proof (2)

Follow the steps given below to prove the angle sum property in the triangle.

Step 1: Draw a line parallel to any given side of a triangle let’s make a line AB parallel to side RQ of the triangle.

Step 2: We know that sum of all the angles in a straight line is 180°. So, ∠APR + ∠RPQ + ∠BPQ = 180°

Step 3: In the given figure as we can see that side AB is parallel to RQ and RP, and QP act as a transversal. So we can see that angle ∠APR = ∠PRQ and ∠BPQ = ∠PQR by the property of alternate interior angles we have studied above.

From step 2 and step 3,

∠PRQ + ∠RPQ + ∠PQR = 180° [Hence Prooved]

Example: In the given triangle PQR if the given is ∠PQR = 30°, ∠QRP = 70°then find the unknown ∠RPQ

Solution:

As we know that, sum of all the angle of triangle is 180°

∠PQR + ∠QRP + ∠RPQ = 180°

⇒ 30° + 70° + ∠RPQ = 180°

⇒ 100° + ∠RPQ = 180°

⇒ ∠RPQ = 180° – 100°

⇒ ∠RPQ = 80°

Exterior Angle Property of a Triangle Theorem

Theorem 2: If any side of a triangle is extended, then the exterior angle so formed is the sum of the two opposite interior angles of the triangle.

Proof:

Angle Sum Property of a Triangle: Theorem, Examples and Proof (3)

As we have proved the sum of all the interior angles of a triangle is 180° (∠ACB + ∠ABC + ∠BAC = 180°) and we can also see in figure, that ∠ACB + ∠ACD = 180° due to the straight line. By the above two equations, we can conclude that

∠ACD = 180° – ∠ACB

⇒ ∠ACD = 180° – (180° – ∠ABC – ∠CAB)

⇒ ∠ACD = ∠ABC + ∠CAB

Hence proved that If any side of a triangle is extended, then the exterior angle so formed is the sum of the two opposite interior angles of the triangle.

Example: In the triangle ABC, ∠BAC = 60° and ∠ABC = 70° then find the measure of angle ∠ACB.

Solution:

The solution to this problem can be approached in two ways:

Method 1: By angle sum property of a triangle we know ∠ACB + ∠ABC + ∠BAC = 180°

So therefore ∠ACB = 180° – ∠ABC – ∠BAC

⇒ ∠ACB = 180° – 70° – 60°

⇒ ∠ACB = 50°

And ∠ACB and ∠ACD are linear pair of angles,

⇒ ∠ACB + ∠ACD = 180°

⇒ ∠ACD = 180° – ∠ACB = 180° – 50° = 130°

Method 2: By exterior angle sum property of a triangle, we know that ∠ACD = ∠BAC + ∠ABC

∠ACD = 70° + 60°

⇒ ∠ACD = 130°

⇒ ∠ACB = 180° – ∠ACD

⇒ ∠ACB = 180° – 130°

⇒ ∠ACB = 50°

Read More about Exterior Angle Theorem.

Angle Sum Property of Triangle Facts

Various interesting facts related to the angle sum property of the triangles are,

  • Angle sum property theorem holds true for all the triangles.
  • Sum of the all the exterior angles of the triangle is 360 degrees.
  • In a triangle sum of any two sides is always greater than equal to the third side.
  • A rectangle and square can be divided into two congruent triangles by their diagonal.

Also, Check

  • Area of a Triangle
  • Area of Isosceles Triangle

Solved Example on Angle Sum Property of a Triangle

Example 1: It is given that a transversal line cuts a pair of parallel lines and the ∠1: ∠2 = 4: 5 as shown in figure 9. Find the measure of the ∠3?

Angle Sum Property of a Triangle: Theorem, Examples and Proof (4)

Solution:

As we are given that the given pair of a line are parallel so we can see that ∠1 and ∠2 are consecutive interior angles and we have already studied that consecutive interior angles are supplementary.

Therefore let us assume the measure of ∠1 as ‘4x’ therefore ∠2 would be ‘5x’

Given, ∠1 : ∠2 = 4 : 5.

∠1 + ∠2 = 180°

⇒ 4x + 5x = 180°

⇒ 9x = 180°

⇒ x = 20°

Therefore ∠1 = 4x = 4 × 20° = 80° and ∠2 = 5x = 5 × 20° = 100°.

As we can clearly see in the figure that ∠3 and ∠2 are alternate interior angles so ∠3 = ∠2

∠3 = 100°.

Example 2: As shown in Figure below angle APQ=120° and angle QRB=110°. Find the measure of the angle PQR given that the line AP is parallel to line RB.

Angle Sum Property of a Triangle: Theorem, Examples and Proof (5)

Solution:

As we are given that line AP is parallel to line RB

We know that the line perpendicular to one would surely be perpendicular to the other. So let us make a line perpendicular to both the parallel line as shown in the picture.

Now as we can clearly see that

∠APM + ∠MPQ = 120° and as PM is perpendicular to line AP so ∠APM = 90° therefore,

⇒ ∠MPQ = 120° – 90° = 30°.

Similarly, we can see that ∠ORB = 90° as OR is perpendicular to line RB therefore,

∠QRO = 110° – 90° = 20°.

Line OR is parallel to line QN and MP therefore,

∠PQN = ∠MPQ as they both are alternate interior angles. Similarly,

⇒ ∠NQR = ∠ORQ

Thus, ∠PQR = ∠PQN + ∠NQR

⇒ ∠PQR = 30° + 20°

⇒ ∠PQR = 50°

FAQs on Angle Sum Property

Define Angle Sum Property of a Triangle.

Angle Sum Property of a triangle states that the sum of all the interior angles of a triangle is equal to 180°. For example, In a triangle PQR, ∠P + ∠Q + ∠R = 180°.

What is the Angle Sum Property of a Polygon?

The angle sum property of a Polygon states that for any polygon with side ‘n’ the sum of all its interior angle is given by,

Sum of all the interior angles of a polygon (side n) = (n-2) × 180°

What is the use of the angle sum property?

The angle sum property of a triangle is used to find the unknown angle of a triangle when two angles are given.

Who discovered the angle sum property of a triangle?

The proof for triangle sum property was first published by, Bernhard Friedrich Thibaut in the second edition of his Grundriss der Reinen Mathematik

What is the Angle Sum Property of a Hexagon?

Angle sum property of a hexagon, states that the sum of all the interior angles of a hexagon is 720°.



sahivam4u

Improve

Previous Article

Transversal Lines

Next Article

Triangles in Geometry

Please Login to comment...

Angle Sum Property of a Triangle: Theorem, Examples and Proof (2024)

FAQs

Angle Sum Property of a Triangle: Theorem, Examples and Proof? ›

Proof of the Angle Sum Property

How to prove the triangle angle sum theorem? ›

We can draw a line parallel to the base of any triangle through its third vertex. Then we use transversals, vertical angles, and corresponding angles to rearrange those angle measures into a straight line, proving that they must add up to 180°.

What is the proof of the angle angle theorem? ›

Two triangles ABC and DEF such that BC is parallel to EF and angle C = angle F and AD = BE. It is given that BC is parallel to EF, angle C is equal in measure to angle F, and |AD| = |BE|. Then, it is true that B = E, because corresponding angles of parallel lines are congruent.

What is the proof of angle angle side congruence theorem? ›

Proof of AAS Congruence Theorem

The AAS congruence theorem states that if any two consecutive angles of a triangle along with a non-included side are equal to the corresponding consecutive angles and the non-included side of another triangle, the two triangles are said to be congruent.

What is an example of the angle sum property of a triangle? ›

For example, if two angles of a triangle are 70° and 60°, we will add these, 70 + 60 = 130°, and we will subtract it from 180°, which is the sum of the angles of a triangle. So, the third angle = 180° - 130° = 50°.

How do you verify the angle sum property of a triangle? ›

The angle between two sides of a triangle is called the interior angle. It is also known as the interior angle property of a triangle. This property states that the sum of all the interior angles of a triangle is 180°. If the triangle is ∆ABC, the angle sum property formula is ∠A+∠B+∠C = 180°.

What is the angle theorem proof? ›

The same side interior angles theorem describes an angles proof according to the statement: 'If two parallel straight segments A and B are crossed by a transversal segment C, two adjacent interior angles are supplementary (sum 180 degrees). '

What is the triangle proofs theorem? ›

The Side-Angle-Side Theorem (SAS) states that if two sides and the angle between those two sides of a triangle are equal to two sides and the angle between those sides of another triangle, then these two triangles are congruent.

What is the angle theorem rule? ›

The exterior angle theorem states that the measure of an exterior angle is equal to the sum of the measures of the two remote interior angles of the triangle. The exterior angle inequality theorem states that the measure of any exterior angle of a triangle is greater than either of the opposite interior angles.

How do you verify that the sum of three angles of a triangle is 180 degrees by paper cutting and pasting? ›

Now, draw a line on the cardboard and paste the cut outs of the angles (∠A, ∠B and ∠C) on the line at a point O as shown in Fig. 12.4. When all the three cut outs of the angles A, B, C placed adjacent to each other at a point, then it forms a line forming a straight angle, i.e. 180°.

What theorem states that all angles in a triangle add up to 180? ›

The triangle sum theorem (also known as the triangle angle sum theorem or angle sum theorem) states that the sum of the three interior angles of any triangle is always 180 degrees. An interior angle is an angle that is on the inside of a triangle.

What is the sum of the angles of a triangle? ›

Sum of the three angles of a triangle is 180∘.

What is an example of AAS proof? ›

If both the triangles are superimposed on each other, we see that ∠B =∠E and ∠C =∠F. And the non-included sides AB and DE are equal in length. Therefore, we can say that ∆ABC ≅ ∆DEF.

What is the angle angle similarity theorem proof? ›

The Angle-Angle-Angle (AAA) criterion for the similarity of triangles states that “If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar”.

How do you prove triangle angles are congruent? ›

The ASA Theorem (angle-side-angle) says that if two angles and the side between them of one triangle are congruent to two angles and the side between of another triangle, then the triangles are congruent. There is no need to check the value of the third angle or the other two sides.

How do you prove the triangle theorem? ›

Proof of Right Angle Triangle Theorem

Theorem:In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle. Hence the theorem is proved.

How do you prove the SSS theorem? ›

Theorem (Side-Side-Side or SSS): Let ABC and DEF be triangles with AB = DE, BC = EF, and CA = FD, then triangle ABC is congruent to triangle DEF. Proof: First, construct a congruent copy of triangle ABC that shares a side with DEF. Construct a point C' so that angle C'DE = angle CAB and also DC' = AC.

What is the proof of triangle congruence theorem? ›

The ASA Theorem (angle-side-angle) says that if two angles and the side between them of one triangle are congruent to two angles and the side between of another triangle, then the triangles are congruent. There is no need to check the value of the third angle or the other two sides.

How do you prove angles in a triangle? ›

The three interior angles of a triangle will always have a sum of 180°. A triangle cannot have an individual angle measure of 180°, because then the other two angles would not exist (180°+0°+0°). The three angles of a triangle need to combine to 180°.

Top Articles
Latest Posts
Article information

Author: Maia Crooks Jr

Last Updated:

Views: 6391

Rating: 4.2 / 5 (63 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Maia Crooks Jr

Birthday: 1997-09-21

Address: 93119 Joseph Street, Peggyfurt, NC 11582

Phone: +2983088926881

Job: Principal Design Liaison

Hobby: Web surfing, Skiing, role-playing games, Sketching, Polo, Sewing, Genealogy

Introduction: My name is Maia Crooks Jr, I am a homely, joyous, shiny, successful, hilarious, thoughtful, joyous person who loves writing and wants to share my knowledge and understanding with you.